A named entity recognition model for 10 high-resource languages, trained on a fine-tuned mBERT base model. The model recognizes three types of entities: location, organization, and person. The training data consists of entity-annotated news articles from various datasets for each language, and the model distinguishes between the beginning and continuation of an entity.
A named entity recognition model for 10 high-resource languages, trained on a fine-tuned mBERT base model. The model recognizes three types of entities: location, organization, and person. The training data consists of entity-annotated news articles from various datasets for each language, and the model distinguishes between the beginning and continuation of an entity.
webhook
fileThe webhook to call when inference is done, by default you will get the output in the response of your inference request