We use essential cookies to make our site work. With your consent, we may also use non-essential cookies to improve user experience and analyze website traffic…

🚀 New models by Bria.ai, generate and edit images at scale 🚀

nvidia logo

nvidia/

NVIDIA-Nemotron-Nano-12B-v2-VL

$0.20

in

$0.60

out

The model is an auto-regressive vision language model that uses an optimized transformer architecture. The model enables multi-image reasoning and video understanding, along with strong document intelligence, visual Q&A and summarization capabilities.

Deploy Private Endpoint
Public
fp8
131,072
Function
Multimodal
Project
nvidia/NVIDIA-Nemotron-Nano-12B-v2-VL cover image
nvidia/NVIDIA-Nemotron-Nano-12B-v2-VL cover image
NVIDIA-Nemotron-Nano-12B-v2-VL

Ask me anything

0.00s

Settings

Model Information

license: other license_name: nvidia-open-model-license license_link: >- https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/ pipeline_tag: image-text-to-text library_name: transformers tags:

  • nvidia
  • VLM
  • FP8

NVIDIA-Nemotron-Nano-VL-12B-V2-FP8

Model Overview

Description

NVIDIA-Nemotron-Nano-VL-12B-V2-FP8 is the quantized version of the NVIDIA Llama Nemotron Nano VL V2 model, which is an auto-regressive vision language model that uses an optimized transformer architecture. For more information, please check here. The NVIDIA Llama Nemotron Nano VL FP4 QAD model is quantized with TensorRT Model Optimizer.

This model was trained on commercial images for all three stages of training and supports single image inference.

License/Terms of Use

Governing Terms:

Your use of the model is governed by the NVIDIA Open License Agreement.

Additional Information:

Backbone LLM: NVIDIA-Nemotron-Nano-12B-v2.

Deployment Geography:

Global

Use Case:

Customers: AI foundry enterprise customers

Use Cases: Image summarization. Text-image analysis, Optical Character Recognition, Interactive Q&A on images, Text Chain-of-Thought reasoning

Release Date:

  • Hugging Face [October 28th, 2025]

Model Architecture:

Network Type: Transformer

Network Architecture:

Vision Encoder: C-RADIOv2-H

Language Encoder: NVIDIA-Nemotron-Nano-12B-v2

Input

Input Type(s): Image, Text

  • Input Images
  • Language Supported: German, Spanish, French, Italian, Korean, Portuguese, Russian, Japanese, Chinese, English

Input Format(s): Image (Red, Green, Blue (RGB)), and Text (String)

Input Parameters: Image (2D), Text (1D)

Other Properties Related to Input:

  • Context length up to 128K
  • Maximum Resolution: Determined by a 12-tile layout constraint, with each tile being 512 × 512 pixels. This supports aspect ratios such as:
    • 4 × 3 layout: up to 2048 × 1536 pixels
    • 3 × 4 layout: up to 1536 × 2048 pixels
    • 2 × 6 layout: up to 1024 × 3072 pixels
    • 6 × 2 layout: up to 3072 × 1024 pixels
    • Other configurations allowed, provided total tiles ≤ 12
  • Channel Count: 3 channels (RGB)
  • Alpha Channel: Not supported (no transparency)

Output

Output Type(s): Text

Output Formats: String

Output Parameters: One-Dimensional (1D): Sequences up to 128K

Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions.

Software Integration

Runtime Engine(s): vLLM
Supported Hardware Microarchitecture Compatibility: H100 SXM 80GB
Supported Operating System(s): Linux

Model Versions:

Nemotron-Nano-VL-12B-V2-FP8

Quick Start

Install Dependencies

pip install causal_conv1d "transformers>4.53,<4.54" torch timm "mamba-ssm==2.2.5" accelerate open_clip_torch numpy pillow

Usage

To serve this checkpoint with vLLM, you can start the docker vllm/vllm-openai:nightly and run the sample command below:

python3 -m vllm.entrypoints.openai.api_server --model nvidia/Nemotron-Nano-VL-12B-V2-FP8 --trust-remote-code --quantization modelopt
copy

Training, Testing, and Evaluation Datasets:

Training Datasets:

Data Modalities
** Total Size: 39'486'703 samples
** Total Number of Datasets: 270

** Text-only datasets: 33
** Text-and-image datasets: 176
** Video-and-text datasets: 61
** Total size: 27.7 TB

** Data modalities: Text, Image, Video
** Data Collection Method by dataset: Hybrid: Automated, Human, Synthetic
** Labeling Method by dataset: Hybrid: Automated, Human, Synthetic

** Dataset partition: Training [100%], Testing [0%], Validation [0%]
** Time period for training data collection: 2023-2025
** Time period for testing data collection: N/A
** Time period for validation data collection: N/A

The post-training datasets consist of a mix of internal and public datasets designed for training vision language models across various tasks. It includes:

  • Public datasets sourced from publicly available images and annotations, supporting tasks like classification, captioning, visual question answering, conversation modeling, document analysis and text/image reasoning.
  • Internal text and image datasets built with public commercial images and internal labels, adapted for the same tasks as listed above.
  • Synthetic image datasets generated programmatically for specific tasks like tabular data understanding and optical character recognition (OCR), for English, Chinese as well as other languages.
  • Video datasets supporting video question answering and reasoning tasks from publicly available video sources, with either publicly available or internally generated annotations.
  • Specialized datasets for safety alignment, function calling, and domain-specific tasks (e.g., science diagrams, financial question answering).
  • NVIDIA-Sourced Synthetic Datasets for text reasoning.
  • Private datasets for safety alignment or VQA on invoices.
  • Crawled or scraped captioning, VQA, and video datasets.
  • Some datasets were improved with Qwen2.5-72B-Instruct annotations

For around ~30% of our total training corpus and several of the domains listed above, we used commeNVIDIA-Nemotron-Nano-VL-12B-V2-FP8 is the quantized version of the NVIDIA Llama Nemotron Nano VL V2 model, which is an auto-regressive vision language model that uses an optimized transformer architecturercially permissive models to perform:

  • Language translation
  • Re-labeling of annotations for text, image and video datasets
  • Synthetic data generation
  • Generating chain-of-thought (CoT) traces

Additional processing for several datasets included rule-based QA generation (e.g., with templates), expanding short answers into longer responses, as well as proper reformatting. More details can be found here.

** Image based datasets were all scanned against known CSAM to make sure no such content was included in training.

Public Datasets

Dataset NameTypeModalitiesNumber of SamplesSize
Captioning on Open Images (subset, relabeled)VQAimage, text1'278'221378.34 GB
Localized Narratives (subset, relabeled)VQAimage, text503'275147.67 GB
TextCaps (subset)Image Captioningimage, text21'9535.76 GB
TextCaps (subset)Image Captioningimage, text109'76528.81 GB
TextVQA (subset)Image Captioningimage, text34'6029.08 GB
RefCocoReferring Expression Groundingimage, text14'6942.39 GB
VQAv2VQAimage, text28'5554.41 GB
AOKVQAVQAimage, text20'8323.39 GB
GQAVQAimage, text21'4332.94 GB
AOKVQAVQAimage, text16'1312.62 GB
synthdog-enOCRimage, text29'6722.31 GB
WITImage Captioningimage, text538'916745.24 GB
CLEVRImage Reasoningimage, text70'00012.57 GB
CLEVR-MathImage Reasoningimage, text70'00012.47 GB
OpenAssistant (oasst1, oasst2)Text Instruction Tuningtext47'1180.09 GB
VATEXVideo Captioningvideo, text2'8805.50 GB
YouCook2Video Captioningvideo, text360.17 GB
VCG+ 112KVideoQAvideo, text1642.82 GB
Video Localized NarrativesVideo Captioningvideo, text3730.64 GB
CLEVRERVQAvideo, text40'00046.05 GB
NExT-QAVideoQAvideo, text10'36857.06 GB
CLEVRERVideo Reasoningvideo, text42'62049.10 GB
ScreenQAVQAimage, text302'00430.52 GB
WikiSQLImage Reasoningimage, textN/AN/A
WikiTableQuestionsTextQAtextN/AN/A
RenderedTextOCRimage, textN/AN/A
FinQAText ReasoningtextN/AN/A
TAT-QAText ReasoningtextN/AN/A
Databricks Dolly 15KText Instruction TuningtextN/AN/A
WebSightImage Classificationimage, textN/AN/A
RAVENImage Reasoningimage, textN/AN/A
VizWizVQAimage, textN/AN/A
Inter-GPSImage Reasoningimage, textN/AN/A
OCR dataset from arXiv dataOCRimage, text120'00049.99 GB
OCR dataset from arXiv dataOCRimage, text599'927249.93 GB
OCR dataset from arXiv dataOCRimage, text1'565'0111637.79 GB
OCR dataset from arXiv dataOCRimage, text418'059422.04 GB
OCR dataset from arXiv dataOCRimage, text200'001200.89 GB
OCR dataset from arXiv dataOCRimage, text200'000198.94 GB
OCR dataset from arXiv dataOCRimage, text200'001196.08 GB
OCR dataset from arXiv dataOCRimage, text400'000382.95 GB
OCR dataset from arXiv dataOCRimage, text400'000388.16 GB
OCR dataset from arXiv dataOCRimage, text18'28020.98 GB
DocLayNet (curated)OCRimage, text48'36918.59 GB
DocLayNet (curated & augmented)OCRimage, text48'2499.12 GB
DocLayNet (curated & augmented)OCRimage, text48'2679.09 GB
SynthTabNetOCRimage, text200'0009.70 GB
OCR dataset based on pdfs from CommonCrawlOCRimage, text14'30917.00 GB
OCR dataset based on pdfs from CommonCrawlOCRimage, text8'4617.77 GB
OCR dataset based on pdfs from CommonCrawlOCRimage, text8'4627.99 GB
OCR dataset based on pdfs from CommonCrawlOCRimage, text14'2365.84 GB
OCR dataset based on pdfs from CommonCrawlOCRimage, text14'2325.92 GB
SynthTablesOCRimage, text4'8870.38 GB
TabRecSetOCRimage, text25'2812.46 GB
TabRecSetOCRimage, text25'2811.61 GB
FinTabNetOCRimage, text57'1379.22 GB
FinTabNetOCRimage, text57'13121.76 GB
FinTabNetOCRimage, text57'12921.68 GB
PubTables-1MOCRimage, text224'17029.55 GB
PubTables-1MOCRimage, text224'16936.32 GB
PubTables-1MOCRimage, text225'10836.45 GB
OCR dataset based on WikimediaOCRimage, text200'00037.13 GB
OCR dataset based on WikimediaOCRimage, text200'00033.38 GB
OCR dataset based on WikimediaOCRimage, text200'00032.85 GB
OCR dataset based on WikimediaOCRimage, text200'00031.15 GB
OCR dataset based on WikimediaOCRimage, text200'00030.30 GB
OCR dataset based on WikimediaOCRimage, text200'00038.40 GB
OCR dataset based on WikimediaOCRimage, text200'00027.09 GB
OCR dataset based on WikimediaOCRimage, text200'00029.52 GB
OCR dataset based on WikimediaOCRimage, text200'00030.49 GB
OCR dataset based on WikimediaOCRimage, text200'00030.14 GB
OCR dataset based on WikimediaOCRimage, text200'000100.14 GB
OCR dataset based on WikimediaOCRimage, text200'00093.82 GB
OCR dataset based on WikimediaOCRimage, text200'00093.96 GB
OCR dataset based on WikimediaOCRimage, text200'00090.61 GB
OCR dataset based on WikimediaOCRimage, text200'00089.89 GB
OCR dataset based on WikimediaOCRimage, text200'00095.75 GB
OCR dataset based on WikimediaOCRimage, text200'00085.65 GB
OCR dataset based on WikimediaOCRimage, text200'00091.01 GB
OCR dataset based on WikimediaOCRimage, text200'00090.29 GB
OCR dataset based on WikimediaOCRimage, text200'00084.66 GB
TextOCROCRimage, text21'7275.83 GB
TextOCROCRimage, text21'1382.83 GB
Table OCR on pdfs from CommonCrawlOCRimage, text19'35912.92 GB
Table OCR on pdfs from CommonCrawlOCRimage, text19'35114.57 GB
Table OCR on pdfs from CommonCrawlOCRimage, text19'35014.44 GB
HierTextOCRimage, text8'2782.60 GB
FUNSDOCRimage, text1490.01 GB
Gretel Synthetic Safety AlignmentSafetyText19'7790.03 GB
Internal safety alignment multimodal datasetSafetyimage, text22'5598.27 GB
ALFRED ActionSafetyvideo, text6'5245.92 GB
ALFRED GoalSafetyvideo, text6'4645.86 GB
VQA-RADSafetyimage, text1'7930.09 GB
SLAKESafetyimage, text9'8350.85 GB
STEM MMLU-aux (subset)Safetytext37'4440.49 GB
Glaive & XlamFunction calltext8'0000.02 GB
Textbooks VQAVQAimage, text46'74510.85 GB
ai2dVQAimage, text12'4132.23 GB
ScienceQAVQAimage, text12'7160.39 GB
ScienceQA from LlaVA-OneVisionVQAimage, text19'1960.65 GB
ChartQAVQAimage, text15'1210.68 GB
ChartQA (augmented)VQAimage, text15'0500.65 GB
ChartQA (CoT)VQAimage, text23'5711.04 GB
ChartQAVQAimage, text60'4382.69 GB
Geo170KVQAimage, text13'2630.07 GB
InfographicVQAVQAimage, text23'9468.21 GB
DocVQAVQAimage, text39'46326.29 GB
DocVQA (CoT)Image Reasoningimage, text16'88110.65 GB
ALLaVA-4V (subset)Visual Instruction Tuningimage, text524'89296.99 GB
ALLaVA-4V (subset)Visual Instruction Tuningimage, text227'77642.52 GB
TabMWPImage Reasoningimage, text23'0580.30 GB
PMC-VQAVQAimage, text2'2660.04 GB
OCR-VQA from The CauldronVQAimage, text165'7465.79 GB
ST-VQA from The CauldronVQAimage, text17'2320.68 GB
WebSight from The CauldronOCRimage, text9'8091.84 GB
EST-VQAVQAimage, text17'0434.25 GB
TAL Handwritten English OCROCRimage, text9'9980.22 GB
TAL Handwritten Math writingOCRimage, text22'2440.33 GB
SlideVQAVQAimage, text5'7730.42 GB
pixmo-docsVQAimage, text251'16534.88 GB
pixmo-capImage Captioningimage, text706'897261.63 GB
pixmo-cap-qaVQAimage, text214'97856.72 GB
pixmo-ask-model-anythingVisual Instruction Tuningimage, text153'59220.50 GB
TallyQAVQAimage, text68'77510.64 GB
Bounding box to text annotations on a subset of Open ImagesVQAimage, text1'664'533490.37 GB
Bounding box to text annotations on a subset of Open ImagesVQAimage, text1'664'533488.17 GB
Bounding box to text annotations on a subset of Open ImagesVQAimage, text1'128'326324.46 GB
TabMWP (CoT)Image Reasoningimage, text20'3050.28 GB
VisualWebInstructVisual Instruction Tuningimage, text260'4197.41 GB
Internal collection of public text SFT datasetsText Instruction Tuningtext197'9381.04 GB
ReCTS from ICDAR2019OCRimage, text20'0001.77 GB
RCTW from ICDAR2017OCRimage, text8'0347.85 GB
OCR equation heavy dataset from arXiv dataOCRimage, text2'0000.03 GB
Mulberry-SFT (CoT)Image Reasoningimage, text191'33230.80 GB
LLaVA-CoT-100k (CoT)Image Reasoningimage, text63'0138.18 GB
GeomVerse (CoT)Image Reasoningimage, text9'2980.90 GB
MapQA (CoT)Image Reasoningimage, text16'8321.77 GB
MetaMathQA (CoT)Text Reasoningtext225'4084.55 GB
MetaMathQA (CoT)Image Reasoningimage, text220'5444.48 GB
PlotQA (CoT)Image Reasoningimage, text16'2560.76 GB
Visual7W Telling (CoT)Image Reasoningimage, text62'5923.21 GB
Visual7W PointingVQAimage, text25'7330.93 GB
VisTextImage Captioningimage, text9'9690.52 GB
ScreenQAVQAimage, text32'7243.51 GB
wave-ui-25kOCRimage, text24'97811.44 GB
Charts2500VQAimage, text2'4860.09 GB
CyrillicOCRimage, text72'2841.49 GB
CMM-MathImage Reasoningimage, text13'1480.05 GB
SimChart9KImage Reasoningimage, text9'5360.69 GB
UniChartImage Reasoningimage, text504'88517.04 GB
CASIA-HWDB2-lineOCRimage, text2'1930.09 GB
MMTabVQAimage, text232'74659.23 GB
ArxivQAVQAimage, text99'99517.32 GB
docmatix-singleVQAimage, text19'9923.94 GB
DocReason525KImage Reasoningimage, text25'86333.80 GB
FigureQAVQAimage, text100'0002.37 GB
LRV-InstructionVisual Instruction Tuningimage, text7'1980.37 GB
VisualWebInstruct (CoT)Image Reasoningimage, text48'9294.37 GB
DocMatix (multi-page)Image Reasoningimage, text19'9698.66 GB
spot-the-diffImage Reasoningimage, text8'0071.45 GB
DocVQA (CoT)Image Reasoningimage, text36'33324.32 GB
DocVQA (CoT)Image Reasoningimage, text45'7102.10 GB
DocVQA (CoT)Image Reasoningimage, text19'5486.70 GB
Mulberry-SFT (subset, CoT)Image Reasoningimage, text103'76318.45 GB
UniGeo (CoT)Image Reasoningimage, text9'7280.05 GB
NIGHTSImage Reasoningimage, text12'90637.01 GB
Mantis-Instruct (CoT)Image Reasoningimage, text67'72313.86 GB
OCR dataset based on pdfs from CommonCrawlImage Reasoningimage, text2'8581.23 GB
OCR dataset based on pdfs from CommonCrawlImage Reasoningimage, text5860.46 GB
FinTabNet (relabeled)Image Reasoningimage, text8'3563.17 GB
Table OCR on pdfs from CommonCrawlImage Reasoningimage, text4'8463.65 GB
HierText (relabeled for QA)Image Reasoningimage, text5140.07 GB
ECD-10k-ImagesImage Reasoningimage, text132'61315.38 GB
ActivityNet (open-ended QA)VideoQAvideo, text6'490162.22 GB
NExT-QA (multi-choice QA)VideoQAvideo, text5'49611.07 GB
NExT-QA (open-ended QA)VideoQAvideo, text5'49210.99 GB
NExT-QA (multi-choice QA)VideoQAvideo, text520.74 GB
NExT-QA (open-ended QA)VideoQAvideo, text610.85 GB
NExT-QA (open-ended QA)VideoQAvideo, text6'84327.83 GB
NExT-QA (multi-choice QA)VideoQAvideo, text6'84327.85 GB
ActivityNet (open-ended QA)VideoQAvideo, text7'420102.81 GB
ActivityNet (open-ended QA)VideoQAvideo, text3'84025.84 GB
NExT-QA (multi-choice QA)VideoQAvideo, text4'63335.38 GB
NExT-QA (open-ended QA)VideoQAvideo, text4'69435.84 GB
ActivityNet (open-ended QA)VideoQAvideo, text2'5807.46 GB
Perception Test (multi-choice QA)VideoQAvideo, text1'78518.67 GB
Perception Test (multi-choice QA)VideoQAvideo, text61811.52 GB
NExT-QAVideoQAvideo, text34'132150.86 GB
CLEVRERVideoQAvideo, text40'00046.03 GB
Video dataset based on KineticsVideoQAvideo, text39'45226.15 GB
EGO4DVideoQAvideo, text7'7973.38 GB
TVQAVideoQAvideo, text34'868100.05 GB
EgoExoLearnVideoQAvideo, text36'3738558.27 GB
Video dataset based on KineticsVideoQAvideo, text647'883890.56 GB
MementosVideoQAvideo, text4'06014.07 GB
Perception TestVideoQAvideo, text7'39294.95 GB
ActivityNetVideoQAvideo, text10'021191.49 GB
EGO4DVideoQAvideo, text1'506137.00 GB
FineActionVideoQAvideo, text7'504169.76 GB
HACSVideoQAvideo, text31'223829.25 GB
HiRESTVideoQAvideo, text82242.50 GB
Perception TestVideoQAvideo, text2'13525.98 GB
ActivityNetVideoQAvideo, text9'064181.24 GB
HiRESTVideoQAvideo, text52527.54 GB
YouCook2VideoQAvideo, text1'18077.65 GB
DiDeMoVideoQAvideo, text7'45233.90 GB
EGO4DVideoQAvideo, text2'665194.01 GB
MedVidQAVideoQAvideo, text93340.35 GB
QuerYDVideoQAvideo, text1'56250.69 GB
YouCook2VideoQAvideo, text2'270158.77 GB
EgoExoLearn (open-ended QA)VideoQAvideo, text9'9981751.69 GB
Breakfast ActionsVideoQAvideo, text1'2043.45 GB
EgoExoLearn (multi-choice QA)VideoQAvideo, text6'8321196.41 GB
CrossTask (multi-choice QA)VideoQAvideo, text75'686417.50 GB
CrossTask (open-ended QA)VideoQAvideo, text20'399112.02 GB
EgoProceL (multi-choice QA)VideoQAvideo, text4'78942.74 GB
EgoProceL (open-ended QA)VideoQAvideo, text5'66750.58 GB
HC-STVG (multi-choice QA)VideoQAvideo, text147'799796.18 GB
HC-STVG (open-ended QA)VideoQAvideo, text41'050221.82 GB
TAPOS (multi-choice QA)VideoQAvideo, text33'941218.50 GB
TAPOS (open-ended QA)VideoQAvideo, text13'99188.00 GB
Multi-page OCR based on CommonCrawl pdf dataVQAimage, text7'26248.19 GB
Multi-page QA based on CommonCrawl pdf dataVQAimage, text45531.88 GB
Table OCR dataset based on CommonCrawl pdf dataOCRimage, text4'2810.68 GB
Table OCR dataset based on CommonCrawl pdf dataOCRimage, text4'2850.67 GB
Table OCR dataset based on CommonCrawl pdf dataOCRimage, text4'2820.67 GB
Selection of public datasets (relabeled)Image Reasoningimage, text13'8434.18 GB
Selection of public datasets (relabeled)Image Reasoningimage, text18'4423.89 GB
Perception TestVideoQAvideo, text7'39294.95 GB
Perception Test (CoT)VideoQAvideo, text4'97764.55 GB

Private Datasets

Dataset NameTypeModalitiesNumber of SamplesSize
Internal safety alignment text datasetSafetyTextN/AN/A
Internal safety alignment text datasetSafetyTextN/AN/A
Synthetic dataset with HLE data with DeepSeek-R1-0528Text Reasoningtext445'9589.01 GB
Internal QA dataset on invoicesImage Reasoningimage, text6'4715.22 GB
Internal QA dataset on invoicesImage Reasoningimage, text11'25810.19 GB

Data Crawling and Scraping

Dataset NameTypeModalitiesNumber of SamplesSize
Internal video datasetVideoQAvideo, text274'472348.84 GB
Internal video datasetVideoQAvideo, text14'25644.46 GB
Internal VQA and captioning datasetImage Captioningimage, text14'8723.27 GB
Internal VQA datasetVQAimage, text20'2501.87 GB
Internal VQA datasetVQAimage, text20'0982.07 GB
Internal Captioning datasetImage Captioningimage, text24'9986.97 GB

User-Sourced Data (Collected by Provider including Prompts)


Self-Sourced Synthetic Data

Dataset NameTypeModalitiesNumber of SamplesSize
Random ASCII characters for OCROCRimage, text14'5335.76 GB
Random ASCII characters for OCROCRimage, text14'5339.26 GB
Random Chinese characters for OCROCRimage, text29'10815.00 GB
Random Chinese characters for OCROCRimage, text29'10824.11 GB
Random English characters for OCROCRimage, text14'5255.65 GB
Random English characters for OCROCRimage, text14'5259.39 GB
Synthetic sparse table datasetOCRimage, text100'00014.36 GB
Synthetic dataset with OpenCodeReasoning 2.0 from DeepSeek-R1-0528Text Reasoningtext1'165'59154.15 GB
Synthetic dataset with OpenCodeReasoning 2.0 from DeepSeek-R1-0528Text Reasoningtext175'0000.95 GB
Synthetic dataset with OpenSTEM from DeepSeek-R1-0528Text Reasoningtext1'922'01228.00 GB
Synthetic dataset with OpenSTEM from DeepSeek-R1-0528Text Reasoningtext288'0000.57 GB
Synthetic dataset with HLE data with DeepSeek-R1-0528Text Reasoningtext67'0000.22 GB
Synthetic tool-calling data with seed tools from ToolBench, Glaive, xLAM and responses from Qwen3-235B-A22B with reasoningText Reasoningtext403'6196.55 GB
Synthetic safety data with responses from DeepSeek-R1-0528Text Reasoningtext30'7100.12 GB
Dummy conversation datasetText Reasoningtext2'2620.00 GB
Chat data with HelpSteer2 HelpSteer3 as seed user prompts and responses from Qwen3-235B-A22B with reasoningText Reasoningtext32'7520.26 GB
Chat data with HelpSteer2 HelpSteer3 as seed user prompts and responses from Qwen3-235B-A22B without reasoningText Reasoningtext3'6360.01 GB
Synthetic chat dataset with responses from DeepSeek-R1Text Reasoningtext389'3503.30 GB
Chat dataset with LMSYS-1M as seed user prompts and responses from Qwen3-235B-A22B with reasoningText Reasoningtext353'5262.61 GB
Chat dataset with LMSYS-1M as seed user prompts and responses from Qwen3-235B-A22B without reasoningText Reasoningtext361'7331.12 GB
Synthetic multilingual STEM from DeepSeek-R1-0528, Qwen2.5-32B-Instruct-AWQ, Qwen2.5-14B-InstructText Reasoningtext4'999'79486.68 GB
Chat dataset with WildChat-1M as seed user prompts and responses from Qwen3-235B-A22B with reasoningText Reasoningtext545'8445.25 GB
Chat dataset with WildChat-1M as seed user prompts and responses from Qwen3-235B-A22B without reasoningText Reasoningtext81'8760.43 GB
Synthetic Math with OpenMathReasoning from DeepSeek-R1-0528Text Reasoningtext1'591'64158.63 GB
Synthetic Math with OpenMathReasoning from DeepSeek-R1-0528Text Reasoningtext239'4670.52 GB
Synthetic dataset with OpenCodeReasoning 2.0 from DeepSeek-R1-0528Codetext1'165'59154.15 GB
Synthetic tool calling dataset from DeepSeek-R1-0528Text Reasoningtext74'04446.43 GB

Properties

  • Additionally, the dataset collection (for training and evaluation) consists of a mix of internal and public datasets designed for training and evaluation across various tasks. It includes:
    • Internal datasets built with public commercial images and internal labels, supporting tasks like conversation modeling and document analysis.
    • Public datasets sourced from publicly available images and annotations, adapted for tasks such as image captioning and visual question answering.
    • Synthetic datasets generated programmatically for specific tasks like tabular data understanding.
    • Specialized datasets for safety alignment, function calling, and domain-specific tasks (e.g., science diagrams, financial question answering).

Evaluation Datasets:

The following external benchmarks are used for evaluating the model:

Dataset
AI2D Test
ChartQA Test
OCRBench
OCRBenchV2 English
DocVQA Val

Data Collection Method by dataset:

  • Hybrid: Human, Automated

Labeling Method by dataset:

  • Hybrid: Human, Automated

Properties (Quantity, Dataset Descriptions, Sensor(s)): N/A

Dataset License(s): N/A

Evaluation Benchmarks:

BenchmarkScore (FP8)Score (BF16)
AI2D87.6%87.1%
OCRBenchV261.8%62.0%
OCRBench85.4%85.6%
ChartQA89.4%89.7%
DocVQA val94.3%94.4%

Inference:

Engine: vLLM
Test Hardware:

  • 1x NVIDIA H100 SXM 80GB

Ethical Considerations:

NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. For more detailed information on ethical considerations for this model, please see the Model Card++ Explainability, Bias, Safety & Security, and Privacy Subcards. Please report security vulnerabilities or NVIDIA AI Concerns here.

Users are responsible for model inputs and outputs. Users are responsible for ensuring safe integration of this model, including implementing guardrails as well as other safety mechanisms, prior to deployment.

Outputs generated by these models may contain political content or other potentially misleading information, issues with content security and safety, or unwanted bias that is independent of our oversight.