Qwen/QwQ-32B-Preview cover image
featured

Qwen/QwQ-32B-Preview

QwQ is an experimental research model developed by the Qwen Team, designed to advance AI reasoning capabilities. This model embodies the spirit of philosophical inquiry, approaching problems with genuine wonder and doubt. QwQ demonstrates impressive analytical abilities, achieving scores of 65.2% on GPQA, 50.0% on AIME, 90.6% on MATH-500, and 50.0% on LiveCodeBench. With its contemplative approach and exceptional performance on complex problems.

QwQ is an experimental research model developed by the Qwen Team, designed to advance AI reasoning capabilities. This model embodies the spirit of philosophical inquiry, approaching problems with genuine wonder and doubt. QwQ demonstrates impressive analytical abilities, achieving scores of 65.2% on GPQA, 50.0% on AIME, 90.6% on MATH-500, and 50.0% on LiveCodeBench. With its contemplative approach and exceptional performance on complex problems.

Public
$0.12/$0.18 in/out Mtoken
bfloat16
32,768
ProjectLicense
Qwen/QwQ-32B-Preview cover image

QwQ 32B

Ask me anything

0.00s

QwQ-32B-Preview

Introduction

QwQ-32B-Preview is an experimental research model developed by the Qwen Team, focused on advancing AI reasoning capabilities. As a preview release, it demonstrates promising analytical abilities while having several important limitations:

  1. Language Mixing and Code-Switching: The model may mix languages or switch between them unexpectedly, affecting response clarity.
  2. Recursive Reasoning Loops: The model may enter circular reasoning patterns, leading to lengthy responses without a conclusive answer.
  3. Safety and Ethical Considerations: The model requires enhanced safety measures to ensure reliable and secure performance, and users should exercise caution when deploying it.
  4. Performance and Benchmark Limitations: The model excels in math and coding but has room for improvement in other areas, such as common sense reasoning and nuanced language understanding.

Specification:

  • Type: Causal Language Models
  • Training Stage: Pretraining & Post-training
  • Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
  • Number of Parameters: 32.5B
  • Number of Paramaters (Non-Embedding): 31.0B
  • Number of Layers: 64
  • Number of Attention Heads (GQA): 40 for Q and 8 for KV
  • Context Length: Full 32,768 tokens