FLUX.2 is live! High-fidelity image generation made simple.

Note: The list of supported base models is listed on the same page. If you need a base model that is not listed, please contact us at feedback@deepinfra.com
Rate limit will apply on combined traffic of all LoRA adapter models with the same base model. For example, if you have 2 LoRA adapter models with the same base model, and have rate limit of 200. Those 2 LoRA adapter models combined will have rate limit of 200.
Pricing is 50% higher than base model.
LoRA adapter model speed is lower than base model, because there is additional compute and memory overhead to apply the LoRA adapter. From our benchmarks, the LoRA adapter model speed is about 50-60% slower than base model.
You could merge the LoRA adapter with the base model to reduce the overhead. And use custom deployment, the speed will be close to the base model.
Pricing 101: Token Math & Cost-Per-Completion Explained<p>LLM pricing can feel opaque until you translate it into a few simple numbers: input tokens, output tokens, and price per million. Every request you send—system prompt, chat history, RAG context, tool-call JSON—counts as input; everything the model writes back counts as output. Once you know those two counts, the cost of a completion is […]</p>
Accelerating Reasoning Workflows with Nemotron 3 Nano on DeepInfraDeepInfra is an official launch partner for NVIDIA Nemotron 3 Nano, the newest open reasoning model in the Nemotron family. Our goal is to give developers, researchers, and teams the fastest and simplest path to using Nemotron 3 Nano from day one.
Building a Voice Assistant with Whisper, LLM, and TTSLearn how to create a voice assistant using Whisper for speech recognition, LLM for conversation, and TTS for text-to-speech.© 2026 Deep Infra. All rights reserved.