FLUX.2 is live! High-fidelity image generation made simple.

Note: The list of supported base models is listed on the same page. If you need a base model that is not listed, please contact us at feedback@deepinfra.com
Rate limit will apply on combined traffic of all LoRA adapter models with the same base model. For example, if you have 2 LoRA adapter models with the same base model, and have rate limit of 200. Those 2 LoRA adapter models combined will have rate limit of 200.
Pricing is 50% higher than base model.
LoRA adapter model speed is lower than base model, because there is additional compute and memory overhead to apply the LoRA adapter. From our benchmarks, the LoRA adapter model speed is about 50-60% slower than base model.
You could merge the LoRA adapter with the base model to reduce the overhead. And use custom deployment, the speed will be close to the base model.
Pricing 101: Token Math & Cost-Per-Completion Explained<p>LLM pricing can feel opaque until you translate it into a few simple numbers: input tokens, output tokens, and price per million. Every request you send—system prompt, chat history, RAG context, tool-call JSON—counts as input; everything the model writes back counts as output. Once you know those two counts, the cost of a completion is […]</p>
How to deploy google/flan-ul2 - simple. (open source ChatGPT alternative)Flan-UL2 is probably the best open source model available right now for chatbots. In this post
we will show you how to get started with it very easily. Flan-UL2 is large -
20B parameters. It is fine tuned version of the UL2 model using Flan dataset.
Because this is quite a large model it is not eas...
Llama 3.1 70B Instruct API from DeepInfra: Snappy Starts, Fair Pricing, Production Fit - Deep Infra<p>Llama 3.1 70B Instruct is Meta’s widely-used, instruction-tuned model for high-quality dialogue and tool use. With a ~131K-token context window, it can read long prompts and multi-file inputs—great for agents, RAG, and IDE assistants. But how “good” it feels in practice depends just as much on the inference provider as on the model: infra, batching, […]</p>
© 2026 Deep Infra. All rights reserved.