camembert-base cover image

camembert-base

We extract contextual embedding features from Camembert, a fill-mask language model, for the task of sentiment analysis. We use the tokenize and encode functions to convert our sentence into a numerical representation, and then feed it into the Camembert model to get the contextual embeddings. We extract the embeddings from all 12 self-attention layers and the input embedding layer to form a 13-dimensional feature vector for each sentence.

We extract contextual embedding features from Camembert, a fill-mask language model, for the task of sentiment analysis. We use the tokenize and encode functions to convert our sentence into a numerical representation, and then feed it into the Camembert model to get the contextual embeddings. We extract the embeddings from all 12 self-attention layers and the input embedding layer to form a 13-dimensional feature vector for each sentence.

Public
$0.0005/sec

HTTP/cURL API

 

Input fields

inputstring

text prompt, should include exactly one <mask> token


webhookfile

The webhook to call when inference is done, by default you will get the output in the response of your inference request

Input Schema

Output Schema


© 2023 Deep Infra. All rights reserved.

Discord Logo