The BEiT model is a Vision Transformer (ViT) pre-trained on ImageNet-21k, a dataset of 14 million images and 21,841 classes, using a self-supervised approach. The model was fine-tuned on the same dataset and achieved state-of-the-art performance on various image classification benchmarks. The BEiT model uses relative position embeddings and mean-pools the final hidden states of the patch embeddings for classification.
The BEiT model is a Vision Transformer (ViT) pre-trained on ImageNet-21k, a dataset of 14 million images and 21,841 classes, using a self-supervised approach. The model was fine-tuned on the same dataset and achieved state-of-the-art performance on various image classification benchmarks. The BEiT model uses relative position embeddings and mean-pools the final hidden states of the patch embeddings for classification.
webhook
fileThe webhook to call when inference is done, by default you will get the output in the response of your inference request