The German BERT model was fine-tuned on the Legal-Entity-Recognition dataset for the named entity recognition (NER) task, achieving an F1 score of 85.67% on the evaluation set. The model uses a pre-trained BERT base model and is trained with a provided script from Hugging Face. The labels covered include various types of legal entities, such as companies, organizations, and individuals.
The German BERT model was fine-tuned on the Legal-Entity-Recognition dataset for the named entity recognition (NER) task, achieving an F1 score of 85.67% on the evaluation set. The model uses a pre-trained BERT base model and is trained with a provided script from Hugging Face. The labels covered include various types of legal entities, such as companies, organizations, and individuals.