We present a sentence transformation model that generates semantically similar sentences. Our model is based on the Sentence-Transformers architecture and was trained on a large dataset of sentence pairs. We evaluate the effectiveness of our model by measuring its ability to generate similar sentences that are close to the original sentence in meaning.
We present a sentence transformation model that generates semantically similar sentences. Our model is based on the Sentence-Transformers architecture and was trained on a large dataset of sentence pairs. We evaluate the effectiveness of our model by measuring its ability to generate similar sentences that are close to the original sentence in meaning.
DeepInfra supports the OpenAI embeddings API. The following creates an embedding vector representing the input text
curl "https://api.deepinfra.com/v1/openai/embeddings" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $DEEPINFRA_TOKEN" \
-d '{
"input": "The food was delicious and the waiter...",
"model": "sentence-transformers/all-MiniLM-L12-v2",
"encoding_format": "float"
}'
which will return something similar to
{
"object":"list",
"data":[
{
"object": "embedding",
"index":0,
"embedding":[
-0.010480394586920738,
-0.0026091758627444506
...
0.031979579478502274,
0.02021978422999382
]
}
],
"model": "sentence-transformers/all-MiniLM-L12-v2",
"usage": {
"prompt_tokens":12,
"total_tokens":12
}
}