A sentence transformation model that has been trained on a wide range of datasets, including but not limited to S2ORC, WikiAnwers, PAQ, Stack Exchange, and Yahoo! Answers. Our model can be used for various NLP tasks such as clustering, sentiment analysis, and question answering.
A sentence transformation model that has been trained on a wide range of datasets, including but not limited to S2ORC, WikiAnwers, PAQ, Stack Exchange, and Yahoo! Answers. Our model can be used for various NLP tasks such as clustering, sentiment analysis, and question answering.
DeepInfra supports the OpenAI embeddings API. The following creates an embedding vector representing the input text
curl "https://api.deepinfra.com/v1/openai/embeddings" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $DEEPINFRA_TOKEN" \
-d '{
"input": "The food was delicious and the waiter...",
"model": "sentence-transformers/all-mpnet-base-v2",
"encoding_format": "float"
}'
which will return something similar to
{
"object":"list",
"data":[
{
"object": "embedding",
"index":0,
"embedding":[
-0.010480394586920738,
-0.0026091758627444506
...
0.031979579478502274,
0.02021978422999382
]
}
],
"model": "sentence-transformers/all-mpnet-base-v2",
"usage": {
"prompt_tokens":12,
"total_tokens":12
}
}
dimensions
integerThe number of dimensions in the embedding. If not provided, the model's default will be used.If provided bigger than model's default, the embedding will be padded with zeros.
Range: 32 ≤ dimensions