sentence-transformers/
We present a sentence transformation model that maps sentences and paragraphs to a 768-dimensional dense vector space, suitable for semantic search tasks. The model is trained on 215 million question-answer pairs from various sources, including WikiAnswers, PAQ, Stack Exchange, MS MARCO, GOOAQ, Amazon QA, Yahoo Answers, Search QA, ELI5, and Natural Questions. Our model uses a contrastive learning objective.
You need to login to use this model
LoginSettings
The service tier used for processing the request. When set to 'priority', the request will be processed with higher priority. 3
whether to normalize the computed embeddings 2
The number of dimensions in the embedding. If not provided, the model's default will be used.If provided bigger than model's default, the embedding will be padded with zeros. (Default: empty, 32 ≤ dimensions ≤ 8192)
[
[
0,
0.5,
1
],
[
1,
0.5,
0
]
]
Run models at scale with our fully managed GPU infrastructure, delivering enterprise-grade uptime at the industry's best rates.