sentence-transformers/paraphrase-MiniLM-L6-v2 cover image

sentence-transformers/paraphrase-MiniLM-L6-v2

We present a sentence similarity model based on the Sentence Transformers architecture, which maps sentences to a 384-dimensional dense vector space. The model uses a pre-trained BERT encoder and applies mean pooling on top of the contextualized word embeddings to obtain sentence embeddings. We evaluate the model on the Sentence Embeddings Benchmark.

We present a sentence similarity model based on the Sentence Transformers architecture, which maps sentences to a 384-dimensional dense vector space. The model uses a pre-trained BERT encoder and applies mean pooling on top of the contextualized word embeddings to obtain sentence embeddings. We evaluate the model on the Sentence Embeddings Benchmark.

Public
$0.005 / Mtoken
512
demoapi

68b97aaedb0c72be3c88c1af64296b3bbb8001fa

2023-03-03T06:51:52+00:00