Text generation AI models can generate coherent and natural-sounding human language text, making them useful for a variety of applications from language translation to content creation.
There are several types of text generation AI models, including rule-based, statistical, and neural models. Neural models, and in particular transformer-based models like GPT, have achieved state-of-the-art results in text generation tasks. These models use artificial neural networks to analyze large text corpora and learn the patterns and structures of language.
While text generation AI models offer many exciting possibilities, they also present some challenges. For example, it's essential to ensure that the generated text is ethical, unbiased, and accurate, to avoid potential harm or negative consequences.
text-generation
Euryale 3.1 - 70B v2.2 is a model focused on creative roleplay from Sao10k
text-generation
L3.3-70B-Euryale-v2.3 is a model focused on creative roleplay from Sao10k
text-generation
We introduce StarCoder2-15B-Instruct-v0.1, the very first entirely self-aligned code Large Language Model (LLM) trained with a fully permissive and transparent pipeline. Our open-source pipeline uses StarCoder2-15B to generate thousands of instruction-response pairs, which are then used to fine-tune StarCoder-15B itself without any human annotations or distilled data from huge and proprietary LLMs.
text-generation
The Dolphin 2.6 Mixtral 8x7b model is a finetuned version of the Mixtral-8x7b model, trained on a variety of data including coding data, for 3 days on 4 A100 GPUs. It is uncensored and requires trust_remote_code. The model is very obedient and good at coding, but not DPO tuned. The dataset has been filtered for alignment and bias. The model is compliant with user requests and can be used for various purposes such as generating code or engaging in general chat.
text-generation
Dolphin 2.9.1, a fine-tuned Llama-3-70b model. The new model, trained on filtered data, is more compliant but uncensored. It demonstrates improvements in instruction, conversation, coding, and function calling abilities.
text-generation
Latest version of the Airoboros model fine-tunned version of llama-2-70b using the Airoboros dataset. This model is currently running jondurbin/airoboros-l2-70b-2.2.1
text-generation
DeepSeek-Prover-V2, an open-source large language model designed for formal theorem proving in Lean 4, with initialization data collected through a recursive theorem proving pipeline powered by DeepSeek-V3. The cold-start training procedure begins by prompting DeepSeek-V3 to decompose complex problems into a series of subgoals. The proofs of resolved subgoals are synthesized into a chain-of-thought process, combined with DeepSeek-V3's step-by-step reasoning, to create an initial cold start for reinforcement learning.
text-generation
We introduce DeepSeek-R1, which incorporates cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAI-o1 across math, code, and reasoning tasks.
text-generation
DeepSeek R1 Distill Qwen 32B is a distilled large language model based on Qwen 2.5 32B, using outputs from DeepSeek R1. It outperforms OpenAI's o1-mini across various benchmarks, achieving new state-of-the-art results for dense models. Other benchmark results include: AIME 2024: 72.6 | MATH-500: 94.3 | CodeForces Rating: 1691.
text-generation
We introduce DeepSeek-R1, which incorporates cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAI-o1 across math, code, and reasoning tasks.
text-generation
CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion.
text-generation
Gemini 1.5 Flash is Google's foundation model that performs well at a variety of multimodal tasks such as visual understanding, classification, summarization, and creating content from image, audio and video. It's adept at processing visual and text inputs such as photographs, documents, infographics, and screenshots. Gemini 1.5 Flash is designed for high-volume, high-frequency tasks where cost and latency matter.
text-generation
Gemma is an open-source model designed by Google. This is Gemma 1.1 7B (IT), an update over the original instruction-tuned Gemma release. Gemma 1.1 was trained using a novel RLHF method, leading to substantial gains on quality, coding capabilities, factuality, instruction following and multi-turn conversation quality.
text-generation
Gemma is a family of lightweight, state-of-the-art open models from Google. Gemma-2-27B delivers the best performance for its size class, and even offers competitive alternatives to models more than twice its size.
text-generation
Gemma is a family of lightweight, state-of-the-art open models from Google. The 9B Gemma 2 model delivers class-leading performance, outperforming Llama 3 8B and other open models in its size category.
Run models at scale with our fully managed GPU infrastructure, delivering enterprise-grade uptime at the industry's best rates.