Published on 2023.08.28 by Iskren Chernev
# create a virtual environment
python3 -m venv .venv
# activate environment in current shell
. .venv/bin/activate
# install openai python client
pip install openai
import openai
stream = True # or False
# Point OpenAI client to our endpoint
openai.api_key = "<YOUR DEEPINFRA TOKEN: deepctl auth token>"
openai.api_base = "https://api.deepinfra.com/v1/openai"
# Your chosen model here
MODEL_DI = "meta-llama/Llama-2-70b-chat-hf"
chat_completion = openai.ChatCompletion.create(
model=MODEL_DI,
messages=[{"role": "user", "content": "Hello world"}],
stream=stream,
max_tokens=100,
# top_p=0.5,
)
if stream:
# print the chat completion
for event in chat_completion:
print(event.choices)
else:
print(chat_completion.choices[0].message.content)
Note that both streaming and batch mode are supported.
If you're already using OpenAI chat completion in your project, you need to
change the api_key
, api_base
and model
params:
import openai
# set these before running any completions
openai.api_key = "YOUR DEEPINFRA TOKEN"
openai.api_base = "https://api.deepinfra.com/v1/openai"
openai.ChatCompletion.create(
model="CHOSEN MODEL HERE",
# ...
)
Our OpenAI API compatible models are priced on token output (just like OpenAI). Our current price is $1 / 1M tokens.
Check the docs for more in-depth information and examples openai api.