We use essential cookies to make our site work. With your consent, we may also use non-essential cookies to improve user experience and analyze website traffic…

Browse deepinfra models:

All categories and models you can try out and directly use in deepinfra:
Search

Category/all

cognitivecomputations/dolphin-2.9.1-llama-3-70b cover image
bfloat16
8k
Replaced
  • text-generation

Dolphin 2.9.1, a fine-tuned Llama-3-70b model. The new model, trained on filtered data, is more compliant but uncensored. It demonstrates improvements in instruction, conversation, coding, and function calling abilities.

deepinfra/airoboros-70b cover image
fp16
4k
Replaced
  • text-generation

Latest version of the Airoboros model fine-tunned version of llama-2-70b using the Airoboros dataset. This model is currently running jondurbin/airoboros-l2-70b-2.2.1

deepinfra/tts cover image
Deprecated
  • text-to-speech

Text-to-Speech (TTS) technology converts written text into spoken words using advanced speech synthesis. TTS systems are used in applications like virtual assistants, accessibility tools for visually impaired users, and language learning software, enabling seamless human-computer interaction.

deepseek-ai/Janus-Pro-1B cover image
$0.0005 / img
  • text-to-image

Janus-Pro is a novel autoregressive framework that unifies multimodal understanding and generation. It addresses the limitations of previous approaches by decoupling visual encoding into separate pathways, while still utilizing a single, unified transformer architecture for processing. The decoupling not only alleviates the conflict between the visual encoder’s roles in understanding and generation, but also enhances the framework’s flexibility. Janus-Pro surpasses previous unified model and matches or exceeds the performance of task-specific models. The simplicity, high flexibility, and effectiveness of Janus-Pro make it a strong candidate for next-generation unified multimodal models.

deepseek-ai/Janus-Pro-7B cover image
$0.002 / img
  • text-to-image

Janus-Pro is a novel autoregressive framework that unifies multimodal understanding and generation. It addresses the limitations of previous approaches by decoupling visual encoding into separate pathways, while still utilizing a single, unified transformer architecture for processing. The decoupling not only alleviates the conflict between the visual encoder’s roles in understanding and generation, but also enhances the framework’s flexibility. Janus-Pro surpasses previous unified model and matches or exceeds the performance of task-specific models. The simplicity, high flexibility, and effectiveness of Janus-Pro make it a strong candidate for next-generation unified multimodal models.

distil-whisper/distil-large-v3 cover image
Deprecated
  • automatic-speech-recognition

Distil-Whisper was proposed in the paper Robust Knowledge Distillation via Large-Scale Pseudo Labelling. This is the third and final installment of the Distil-Whisper English series. It the knowledge distilled version of OpenAI's Whisper large-v3, the latest and most performant Whisper model to date. Compared to previous Distil-Whisper models, the distillation procedure for distil-large-v3 has been adapted to give superior long-form transcription accuracy with OpenAI's sequential long-form algorithm.

google/codegemma-7b-it cover image
fp16
8k
Replaced
  • text-generation

CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion.

google/gemma-1.1-7b-it cover image
bfloat16
8k
Replaced
  • text-generation

Gemma is an open-source model designed by Google. This is Gemma 1.1 7B (IT), an update over the original instruction-tuned Gemma release. Gemma 1.1 was trained using a novel RLHF method, leading to substantial gains on quality, coding capabilities, factuality, instruction following and multi-turn conversation quality.

google/gemma-2-27b-it cover image
bfloat16
8k
Replaced
  • text-generation

Gemma is a family of lightweight, state-of-the-art open models from Google. Gemma-2-27B delivers the best performance for its size class, and even offers competitive alternatives to models more than twice its size.

google/gemma-2-9b-it cover image
bfloat16
8k
Replaced
  • text-generation

Gemma is a family of lightweight, state-of-the-art open models from Google. The 9B Gemma 2 model delivers class-leading performance, outperforming Llama 3 8B and other open models in its size category.

intfloat/e5-base-v2 cover image
512
$0.005 / Mtoken
  • embeddings

Text Embeddings by Weakly-Supervised Contrastive Pre-training. Model has 24 layers and 1024 out dim.

intfloat/e5-large-v2 cover image
512
$0.010 / Mtoken
  • embeddings

Text Embeddings by Weakly-Supervised Contrastive Pre-training. Model has 24 layers and 1024 out dim.

intfloat/multilingual-e5-large cover image
fp32
512
$0.010 / Mtoken
  • embeddings

The Multilingual-E5-large model is a 24-layer text embedding model with an embedding size of 1024, trained on a mixture of multilingual datasets and supporting 100 languages. The model achieves state-of-the-art results on the Mr. TyDi benchmark, outperforming other models such as BM25 and mDPR. The model is intended for use in text retrieval and semantic similarity tasks, and should be used with the "query: " and "passage: " prefixes for input texts to achieve optimal performance.

lizpreciatior/lzlv_70b_fp16_hf cover image
fp16
4k
Replaced
  • text-generation

A Mythomax/MLewd_13B-style merge of selected 70B models A multi-model merge of several LLaMA2 70B finetunes for roleplaying and creative work. The goal was to create a model that combines creativity with intelligence for an enhanced experience.

mattshumer/Reflection-Llama-3.1-70B cover image
bfloat16
8k
Replaced
  • text-generation

Reflection Llama-3.1 70B is trained with a new technique called Reflection-Tuning that teaches a LLM to detect mistakes in its reasoning and correct course. The model was trained on synthetic data.